Flocking
Flocking by Daniel Shiffman.
An implementation of Craig Reynold’s Boids program to simulate the flocking behavior of birds. Each boid steers itself based on rules of avoidance, alignment, and coherence.
Click the mouse to add a new boid.
Flock flock; void setup() { size(640, 360); flock = new Flock(); // Add an initial set of boids into the system for (int i = 0; i < 150; i++) { flock.addBoid(new Boid(width/2,height/2)); } } void draw() { background(50); flock.run(); } // Add a new boid into the System void mousePressed() { flock.addBoid(new Boid(mouseX,mouseY)); } // The Flock (a list of Boid objects) class Flock { ArrayList<Boid> boids; // An ArrayList for all the boids Flock() { boids = new ArrayList<Boid>(); // Initialize the ArrayList } void run() { for (Boid b : boids) { b.run(boids); // Passing the entire list of boids to each boid individually } } void addBoid(Boid b) { boids.add(b); } } // The Boid class class Boid { PVector position; PVector velocity; PVector acceleration; float r; float maxforce; // Maximum steering force float maxspeed; // Maximum speed Boid(float x, float y) { acceleration = new PVector(0, 0); // This is a new PVector method not yet implemented in JS // velocity = PVector.random2D(); // Leaving the code temporarily this way so that this example runs in JS float angle = random(TWO_PI); velocity = new PVector(cos(angle), sin(angle)); position = new PVector(x, y); r = 2.0; maxspeed = 2; maxforce = 0.03; } void run(ArrayList<Boid> boids) { flock(boids); update(); borders(); render(); } void applyForce(PVector force) { // We could add mass here if we want A = F / M acceleration.add(force); } // We accumulate a new acceleration each time based on three rules void flock(ArrayList<Boid> boids) { PVector sep = separate(boids); // Separation PVector ali = align(boids); // Alignment PVector coh = cohesion(boids); // Cohesion // Arbitrarily weight these forces sep.mult(1.5); ali.mult(1.0); coh.mult(1.0); // Add the force vectors to acceleration applyForce(sep); applyForce(ali); applyForce(coh); } // Method to update position void update() { // Update velocity velocity.add(acceleration); // Limit speed velocity.limit(maxspeed); position.add(velocity); // Reset accelertion to 0 each cycle acceleration.mult(0); } // A method that calculates and applies a steering force towards a target // STEER = DESIRED MINUS VELOCITY PVector seek(PVector target) { PVector desired = PVector.sub(target, position); // A vector pointing from the position to the target // Scale to maximum speed desired.normalize(); desired.mult(maxspeed); // Above two lines of code below could be condensed with new PVector setMag() method // Not using this method until Processing.js catches up // desired.setMag(maxspeed); // Steering = Desired minus Velocity PVector steer = PVector.sub(desired, velocity); steer.limit(maxforce); // Limit to maximum steering force return steer; } void render() { // Draw a triangle rotated in the direction of velocity float theta = velocity.heading2D() + radians(90); // heading2D() above is now heading() but leaving old syntax until Processing.js catches up fill(200, 100); stroke(255); pushMatrix(); translate(position.x, position.y); rotate(theta); beginShape(TRIANGLES); vertex(0, -r*2); vertex(-r, r*2); vertex(r, r*2); endShape(); popMatrix(); } // Wraparound void borders() { if (position.x < -r) position.x = width+r; if (position.y < -r) position.y = height+r; if (position.x > width+r) position.x = -r; if (position.y > height+r) position.y = -r; } // Separation // Method checks for nearby boids and steers away PVector separate (ArrayList<Boid> boids) { float desiredseparation = 25.0f; PVector steer = new PVector(0, 0, 0); int count = 0; // For every boid in the system, check if it's too close for (Boid other : boids) { float d = PVector.dist(position, other.position); // If the distance is greater than 0 and less than an arbitrary amount (0 when you are yourself) if ((d > 0) && (d < desiredseparation)) { // Calculate vector pointing away from neighbor PVector diff = PVector.sub(position, other.position); diff.normalize(); diff.div(d); // Weight by distance steer.add(diff); count++; // Keep track of how many } } // Average -- divide by how many if (count > 0) { steer.div((float)count); } // As long as the vector is greater than 0 if (steer.mag() > 0) { // First two lines of code below could be condensed with new PVector setMag() method // Not using this method until Processing.js catches up // steer.setMag(maxspeed); // Implement Reynolds: Steering = Desired - Velocity steer.normalize(); steer.mult(maxspeed); steer.sub(velocity); steer.limit(maxforce); } return steer; } // Alignment // For every nearby boid in the system, calculate the average velocity PVector align (ArrayList<Boid> boids) { float neighbordist = 50; PVector sum = new PVector(0, 0); int count = 0; for (Boid other : boids) { float d = PVector.dist(position, other.position); if ((d > 0) && (d < neighbordist)) { sum.add(other.velocity); count++; } } if (count > 0) { sum.div((float)count); // First two lines of code below could be condensed with new PVector setMag() method // Not using this method until Processing.js catches up // sum.setMag(maxspeed); // Implement Reynolds: Steering = Desired - Velocity sum.normalize(); sum.mult(maxspeed); PVector steer = PVector.sub(sum, velocity); steer.limit(maxforce); return steer; } else { return new PVector(0, 0); } } // Cohesion // For the average position (i.e. center) of all nearby boids, calculate steering vector towards that position PVector cohesion (ArrayList<Boid> boids) { float neighbordist = 50; PVector sum = new PVector(0, 0); // Start with empty vector to accumulate all positions int count = 0; for (Boid other : boids) { float d = PVector.dist(position, other.position); if ((d > 0) && (d < neighbordist)) { sum.add(other.position); // Add position count++; } } if (count > 0) { sum.div(count); return seek(sum); // Steer towards the position } else { return new PVector(0, 0); } } }
Functions Used
Using the beginShape() and endShape() functions allow creating more complex forms
Learn MoreCalled directly after setup(), the draw() function continuously executes the lines of code contained inside its block until the program is stopped or noLoop() is called
Learn MoreThe mousePressed() function is called once after every time a mouse button is pressed
Learn MoreThe endShape() function is the companion to beginShape() and may only be called after beginShape()
Learn MoreThe background() function sets the color used for the background of the Processing window
Learn MoreA class to describe a two or three dimensional vector, specifically a Euclidean (also known as geometric) vector
Learn More